一、全數(shù)字技術(shù)背景
在光度色度測量儀器中,主要分為兩大技術(shù)系列的產(chǎn)品,分別為分光光度法和積分法。80年代SPD和CCD探測器的研究成功,被引入至光度色度測量儀器研究領(lǐng)域中后,直接改變了傳統(tǒng)的以機械掃描為基礎(chǔ)分光光度法測試技術(shù),使分光光度技術(shù)獲得了重大突破,形成了新一代的數(shù)字化快速測量儀器,并在90年代得到了廣泛的應(yīng)用。
積分法原理是將探測器光譜響應(yīng)曲線匹配成CIE 1931標準色度觀察者光譜三刺激值,就是使探測器的響應(yīng)分別與、相一致,則這樣的測試儀器就可以直接得到相應(yīng)的顏色參數(shù),如色品坐標、相關(guān)色溫等。這種方法的突出優(yōu)點在于系統(tǒng)簡易、性價比高、測量速度快、可靠性高,因而十分適合作為一種大量使用的便攜式光度色度測量儀器。然而積分法的測量技術(shù)長期停滯不前,它所采用的以光電池作為光探測器,結(jié)合放大器、A/D轉(zhuǎn)換和顯示的測量系統(tǒng),幾乎成為了固定的模式,從70、80年代至今,沒有什么重大改進,大大限制了積分式測量儀器的應(yīng)用領(lǐng)域。
二、傳統(tǒng)結(jié)構(gòu)的模擬光測技術(shù)
圖1所示為傳統(tǒng)結(jié)構(gòu)的照度計原理框圖,這是一種典型的模擬積分式光度測量儀器。其傳感器通常采用光電池結(jié)合一組濾光片,把光信號強度轉(zhuǎn)化成電流信號,以可變增益放大器進行信號放大,然后被A/D采樣并顯示。
圖1傳統(tǒng)結(jié)構(gòu)的照度計
在積分式測試技術(shù)中,為了保證測量的高準確度,必須盡量減小探測器的光譜響應(yīng)S(λ)分別與 、 、 的差異。在評價探測器匹配精度(f1)時,我國以V(λ)優(yōu)于5%作為1級照度計標準,優(yōu)于4%作為1級亮度計標準。
傳統(tǒng)結(jié)構(gòu)的光測儀器具有以下特點:
1、傳感器以連續(xù)變化的電流或電壓量為輸出信號,是一個模擬系統(tǒng);
2、信號檢測系統(tǒng)在A/D轉(zhuǎn)換前部分均為模擬系統(tǒng),經(jīng)A/D轉(zhuǎn)換后成為數(shù)字量。
其檢測部分由于模擬器件的大量使用,即使探測器具有極高的測量精度和極小的漂移,由于模擬系統(tǒng)的先天因數(shù),必將存在著模擬系統(tǒng)所固有的缺陷:
1、放大器漂移:放大器的漂移主要是受到環(huán)境溫度、濕度等變化的影響。在檢測系統(tǒng)中,高精度放大器只能依靠高質(zhì)量、高精度的元器件保證。因此必須保證信號通道中所采用的所有元器件的性能,需要選擇具有高線性度、高共模抑制比、低噪聲、低失調(diào)等指標的高性能放大器芯片,高精度、低溫度系數(shù)的分立元件。但是即使這樣,也只能降低放大器的漂移,而不能完全消除??傊耗M信號通道中的放大器漂移是影響檢測精度的主要因素;
2、A/D轉(zhuǎn)換誤差:A/D轉(zhuǎn)換誤差主要表現(xiàn)在量化誤差和采樣噪聲。在傳統(tǒng)的檢測系統(tǒng)中,通常采用12位A/D轉(zhuǎn)換芯片,若其轉(zhuǎn)換誤差為1LSB,對滿量程的電壓輸入信號,其轉(zhuǎn)換精度在萬分之一量級。但是在測量中,由于被測光的變化,一般很難實現(xiàn)滿量程輸入的電壓信號,則檢測精度相應(yīng)降低,一般只能保持在千分之一量級。即使采用高分辨率的A/D,如16位A/D轉(zhuǎn)換芯片,其轉(zhuǎn)換誤差也將維持在萬分之一量級。同時A/D芯片固有的采樣噪聲也很難克服;
3、電源干擾:任何模擬系統(tǒng),其供電電源的穩(wěn)定性至關(guān)重要,電源干擾將直接影響到放大器工作的穩(wěn)定性,因此必須改善供電電源的性能,和1、2點相同,需要采用大量高性能的器件,即便如此,對電源紋波的抑制畢竟是有限度的;
4、換檔誤差:考慮到實際應(yīng)用所需要的較大動態(tài)范圍,因此一般需根據(jù)輸入信號的強度采用多個檔位測量,則必將帶來換檔誤差。
上述的多個因數(shù)都造成積分式測量儀器雖然具有性價比高、測量速度快、可靠性高等顯著的優(yōu)點,卻在實際應(yīng)用中受到多方面的限制。
三、全數(shù)字光測技術(shù)
90年代后期,隨著數(shù)字技術(shù)的不斷發(fā)展,國際上逐步研制成功將光信號直接轉(zhuǎn)換成數(shù)字信號的小型高靈敏度探測器。這和 SPD/CCD的研究成功幾乎具有同樣重要的意義。杭州新葉光電工程公司對國際這一新動態(tài)進行了同步追蹤及研究,研制成功全數(shù)字V(λ)傳感器,該傳感器的匹配精度(f1)在3%-4%左右,達到國家1級照度計標準和亮度計標準,同時引入數(shù)字化檢測技術(shù),完成全數(shù)字信號檢測系統(tǒng)。圖2所示為全數(shù)字照度計原理框圖,這是一種典型的全數(shù)字積分式光度測量儀器。它以數(shù)字V(λ)傳感器替代現(xiàn)有的模擬V(λ)傳感器,以全數(shù)字信號檢測系統(tǒng)替代現(xiàn)有的模擬信號檢測系統(tǒng)。徹底改變了以模擬信號檢測方法為中心的現(xiàn)有積分式光測儀器。
圖2 全數(shù)字照度計
由上述技術(shù)研制成功的照度計、亮度計系列已通過國家計量部門的檢測,已取得計量器具制造許可證書,并已批量生產(chǎn)。
全數(shù)字光測技術(shù)與現(xiàn)有技術(shù)相比,其主要優(yōu)點表現(xiàn)在:
1、檢測系統(tǒng)無漂移:由于采用了數(shù)字V(λ)傳感器,傳感器輸出為數(shù)字量,且可以直接和CPU相連,因此在檢測系統(tǒng)中放棄了現(xiàn)有技術(shù)中放大器、模擬開關(guān)、A/D等一系列應(yīng)用于模擬檢測系統(tǒng)中的主要部分,完全克服了檢測系統(tǒng)漂移現(xiàn)象,實現(xiàn)了無漂移檢測;
2、檢測精度高:采用單片微機為核心處理器,對信號具有極高的檢測精度。一般可以達到2×10-6,高于18位A/D采樣精度,大大高于現(xiàn)有技術(shù)中通常采用的12位A/D的精度,且無任何采樣噪聲;
3、抗干擾能力強:由于數(shù)字系統(tǒng)中為0、1信號,一般低電平為0V,高電平為3或5V,具有很強的抗干擾的能力,因此對供電電源的要求也遠遠低于模擬系統(tǒng);
4、無換檔誤差:采用數(shù)字V(λ)傳感器具有很大的動態(tài)范圍,無需換檔;
5、RS232接口:可用于計算機遠程監(jiān)控。
四、結(jié)論
全數(shù)字技術(shù)克服了傳統(tǒng)技術(shù)中無法避免的放大器漂移、A/D轉(zhuǎn)換誤差、電源干擾和換檔誤差等誤差因數(shù),徹底改變幾十年來傳統(tǒng)的模擬積分式光度色度儀器結(jié)構(gòu),形成一類新型高精度的全數(shù)字化、無漂移、大動態(tài)范圍的光度色度測量儀器,這些對于傳統(tǒng)技術(shù)都是無法想象的,也是首次將積分式測量儀器全數(shù)字化,是積分式光度色度測量理論和技術(shù)研究的突破,具有重要的學(xué)術(shù)價值和廣闊的應(yīng)用前景。